
CS 1112 Prelim 2 Review

Prelim 2 Topics
● 2-dimensional arrays (matrices)

○ 2-d array traverse with nested loops
○ Partial matrix traverse, e.g., triangular

● 3-dimensional arrays (e.g., color image data)
● type uint8 data (doing arithmetic with uint8 variables)
● vectorized code
● character and char arrays (1-d, 2-d) (We do not use type

String. No ASCII arithmetic.)
● cell arrays
● Linear search

2-D and 3-D arrays
2-D array (also known as a matrix)

• A collection of data (e.g. numbers, or characters,
but not both) stored in rows and columns

• Items are referenced using 2 numbers
(row # and column #) A(i,j)

3-D array
• A series of 2-D arrays layered on each other
• Items are referenced by 3 numbers

(row #, column #, layer #) A(i,j,k)

3 columns

3 rows

3 columns

3 layers

3 r
ow

s

Example: 3x3 matrix

Example: 3x3x3 3-D array

2-D and 3-D arrays
Initialize a 2-D array, A
% Create 3x3 matrix of zeros
A = zeros(3,3);

Find size of 2-D array A
[nr,nc] = size(A); % nr=3,nc=3

Pattern for traversing a 2-D array
for r = 1:nr
 for c = 1:nc
 % Do something to A(r,c)
 end
end

Initialize a 3-D array, B
% Create 3x3x3 matrix of zeros
B = zeros(3,3,3);

Find size of 3-D array B
[nr,nc,np] = size(B); % nr=3,nc=3,np=3

Pattern for traversing a 3-D array
for r = 1:nr
 for c = 1:nc
 for p = 1:np
 % Do something to A(r,c,p)
 end
 end
end

Note: this would also
work for a 2-D array;
np would just be 1.

Remember the image of a 3-D array as a
stack of 2-D arrays: this pattern works by

examining down the layers, then across the
columns, then down the rows

Matrix transposition
Given a matrix M, where
M = 1 2
 3 4

We’d like to create a matrix T, which
stores the transpose of M.
T = 1 3
 2 4

How do we write code to do this?

Hints: the rows of M have become
the columns of T. M(1, 2) is the same
as T(2, 1).

Solution:
• We know that we need a nested

for-loop to go through all elements of
M.

• Relation between M and T: reverse
positions in M to get positions in T

[nr,nc] = size(M);
for r = 1:nr
 for c = 1:nc
 T(c,r) = M(r,c);
 end
end

Mirror image of a 2-D array
Given a matrix M, where
M = 1 2 3 4
 5 6 7 8

We’d like to create a matrix T, which is
the mirror image of M.
T = 4 3 2 1
 8 6 7 5

How do we write code to do this?

Hint: Reverse the order of the
columns of M to get T.

How do we re-order the columns?
M = 1 2 3 4
 5 6 7 8

Relationship between a pair of columns
that must be reversed:

Column c should be replaced by column
(nc – c) + 1.

Switch columns 1 and nc

Switch columns 2 and nc-1

Mirror image of a 2-D array
Given a matrix M, where
M = 1 2 3 4
 5 6 7 8

We’d like to create a matrix T, which is
the mirror image of M.
T = 4 3 2 1
 8 6 7 5

How do we write code to do this?

Hint: Reverse the order of the
columns of M to get T.

Non-vectorized solution:
Column c should be exchanged with
column (nc – c) + 1.

[nr,nc] = size(M);

for r = 1:nr

 for c = 1:nc

 T(r,c) = M(r,(nc-c)+1));

 end

end

Mirror image of a 2-D array
Given a matrix M, where
M = 1 2 3 4
 5 6 7 8

We’d like to create a matrix T, which is
the mirror image of M.
T = 4 3 2 1
 8 6 7 5

How do we write code to do this?

Hint: Reverse the order of the
columns of M to get T.

Vectorized solution:
Column c should be exchanged with
column (nc – c) + 1.

[nr,nc] = size(M);

for c = 1:nc

 T(:,c) = M(:,(nc-c)+1));

end

The vectorized solution exchanges entire
columns instead of individual elements.

Mirror image of a 3-D array
Vectorized solution:

Column c should be exchanged with
column (nc – c) + 1.

[nr, nc, np] = size(M);

for c = 1:nc

 T(:,c,:) = M(:,nc-c+1,:);

end

Non-vectorized solution:

Column c should be exchanged with
column (nc – c) + 1.

[nr, nc, np] = size(M);

for p = 1:np

 for r = 1:nr

 for c = 1:nc

 T(r,c,p) = M(r,(nc-c)+1,p);

 end

 end

end

2-D and 3-D arrays: Sub-arrays
The neighborhood of a particular cell in an
array is the set of cells that surround that one
cell within a particular radius.

(i,j) (i,j)

Neighborhood radius: r = 1 Neighborhood radius: r = 2
Column j

Row i

Column j

Row i

i – r

i + r

i – r

i + r

j – r j + r j – r j + r

How do we extract the sub-array
that corresponds to the

highlighted neighborhood?

We need to select all rows
between row i-r and row i+r, and
all columns between columns j-r

and j+r.

2-D and 3-D arrays: Sub-arrays

 (i,j)

Neighborhood radius: r = 2
Column j

Row i

i – r

j + r

From previous slide: We need to select all rows between row i-r and row i+r, and all
columns between columns j-r and j+r. What if the neighborhood goes out of bounds?

How do we generalize this approach so that it works
when i-r or i+r or j-r or j+r are out of bounds?

Solution:
[m,n] = size(M);
iMin = max(1,i-r)
iMax = min(m,i+r)
jMin = max(1,j-r)
jMax = min(n,j+r)

% Now extract submatrix: the neighborhood
C = M(iMin:iMax, jMin:jMax)

2-D and 3-D arrays: Resizing an array
Interpolating on a matrix means:

• Inserting new rows/columns between existing rows/columns
• The new rows/columns are calculated from a pair of originally adjacent

rows/columns

Example of expanding a matrix (original cells in gray):

1 2 3

4 5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6

2-D and 3-D arrays: Resizing an array
If the interpolation involves creating additional rows and columns,
it is easier to work with one dimension at a time, i.e. columns first
and then rows.

Example of expanding a matrix (original cells in gray):

1 2 3

4 5 6

1 1.5 2 2.5 3

4 4.5 5 5.5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6
Size: nr x nc Size: nr x 2*nc-1

Size: 2*nr-1 x 2*nc-1

2-D and 3-D arrays: Resizing an array

1 2 3

4 5 6

1 1.5 2 2.5 3

4 4.5 5 5.5 6

1 1.5 2 2.5 3

2.5 3 3.5 4 4.5

4 4.5 5 5.5 6
Size: nr x nc Size: nr x 2*nc-1

Size: 2*nr-1 x 2*nc-1

Step 1: interpolate on columns
for r= 1:nr
 for c= 1:nc-1

 % copy original data
 wideM(r,c*2-1)= M(r,c);

 % calculate average of adjacent columns
 wideM(r,c*2)= M(r,c)/2 + M(r,c+1)/2;
 end
 wideM(r,nc*2-1)= M(r,nc);
end

Step 2: interpolate on rows
for c= 1:nc*2-1
 for r= 1:nr-1

 % copy data from intermediate matrix
 newM(r*2-1,c)= wideM(r,c);

 % calculate average of adjacent rows
 newM(r*2,c)= wideM(r,c)/2 + wideM(r+1,c)/2;
 end
 newM(nr*2-1,c)= wideM(nr,c);
end

2-D and 3-D arrays: Resizing an array

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3.5 5.5

11.5 13.5

How might we reduce a 2-D array by averaging each group of 4
cells?

Solution:
• Size of new matrix: ½ the size of the original one
• We can pick one cell in each group (for example, pick the cells

containing the values 6, 8, 14, 16), and calculate the average
of it and its neighbors.

[nr,nc] = size(M);
N = zeros(nr/2, nc/2);
for r = 2:2:nr
 for c = 2:2:nc
 avg = (M(r-1,c)+M(r-1,c-1)+M(r,c-1)+M(r,c))/4;
 N(r/2,c/2) = avg;
 end
end

Fall 2020 Prelim: Question 2

Fall 2020 Prelim: Question 2
function v = countPositives (D)

end

Fall 2020 Prelim: Question 2
function v = countPositives (D)
[n,~] = size(D);
v = zeros(1,n);

end

Fall 2020 Prelim: Question 2
function v = countPositives (D)
[n,~] = size(D);
v = zeros(1,n);

for r = 1:n
for c = _ : _

end
end

end

Fall 2020 Prelim: Question 2
function v = countPositives (D)
[n,~] = size(D);
v = zeros(1,n);

for r = 1:n
for c = 1 : r

if D(r,c) > 0
v(c) = v(c) + 1

end

end
end

end

Fall 2020 Prelim: Question 2

Thing we need to do Programming concept needed to do this
thing

1 Create a 2D array of the correct size

2

3

Designing an algorithm

Fall 2020 Prelim: Question 2

Thing we need to do Programming concept needed to do this
thing

1 Create a 2D array of the correct size Use the size() and zeros() functions to get the
size and make the array

2

3

Designing an algorithm

Fall 2020 Prelim: Question 2

Thing we need to do Programming concept needed to do this
thing

1 Create a 2D array of the correct size Use the size() and zeros() functions to get the
size and make the array

2 Iterate through the part of the array we want

3

Designing an algorithm

Fall 2020 Prelim: Question 2

Thing we need to do Programming concept needed to do this
thing

1 Create a 2D array of the correct size Use the size() and zeros() functions to get the
size and make the array

2 Iterate through the part of the array we want Create a nested for-loop with the right loop
parameter

3 Keep track of the number of positive values seen so
far

Designing an algorithm

Fall 2020 Prelim: Question 2

Thing we need to do Programming concept needed to do this
thing

1 Create a 2D array of the correct size Using the size() and zeros() functions to get the
size and make the array

2 Iterate through the part of the array we want Creating a nested for-loop with the right loop
parameter

3 Keep track of the number of positive values seen so
far

Use if-statement separate cases, and then
incrementing array values

Designing an algorithm

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form a string, but a string is not a type – it is just an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form a string, but a string is not a type – it is just an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form a string, but a string is not a type – it is just an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 0/1.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Matlab data types
A type is a way of representing data. You should be aware of these types:

• double: the default type for numbers in Matlab
Array of doubles: x = [1, 2, 3];

• uint8: integers ranging from 0 to 255
Array of uint8 numbers: y = uint8(x);

• char: standard characters, including letters, digits, symbols. Multiple chars
together form an array of characters.
Array of characters: s = ‘CS1112’; s = [‘c’, ’s’, ’1’, ’1’, ’1’, ’2’];

• logical: also known as a boolean. Can be true/false or 1/0.
Creating a logical: z = rand > 0.5

An array can only hold values of one type. A cell array is a special
kind of array that can hold data of different types. Yay!

Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers,
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3; % Do this
badAverage = (x(1) + x(2) + x(3))/3; % Don’t do this

Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers,
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3; % Do this
badAverage = (x(1) + x(2) + x(3))/3; % Don’t do this

Working with images: uint8 type
What is uint8?
An integer that can hold values between 0 and 255 (28 – 1 = 255). Images can be
represented with numbers in this range.

How to convert numeric data into uint8:
Given an array x of (regular) numbers,
y = uint8(x);

Note about overflow:
If you need to perform an arithmetic operation on uint8 numbers, e.g. averaging, be careful
that the numbers won’t overflow, i.e. exceed 255.
goodAverage = x(1)/3 + x(2)/3 + x(3)/3; % Do this
badAverage = (x(1) + x(2) + x(3))/3; % Don’t do this

Fall 2019 Prelim: Question 4

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
% Transform image from RGB colorspace to YCoCg colorspace.
% rgb is a 3D uint8 array such that rgb(i,j,k) is the value of channel
% k (R, G, or B) for the pixel at row i and column j.
% ycocg is a 3D uint8 array such that ycocg(i,j,k) is the value of
% channel k (Y, Co, or Cg) for the pixel at row i and column j after
% being transformed from RGB to YCoCg.

end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
% Transform image from RGB colorspace to YCoCg colorspace.
% rgb is a 3D uint8 array such that rgb(i,j,k) is the value of channel
% k (R, G, or B) for the pixel at row i and column j.
% ycocg is a 3D uint8 array such that ycocg(i,j,k) is the value of
% channel k (Y, Co, or Cg) for the pixel at row i and column j after
% being transformed from RGB to YCoCg.
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
% Transform image from RGB colorspace to YCoCg colorspace.
% rgb is a 3D uint8 array such that rgb(i,j,k) is the value of channel
% k (R, G, or B) for the pixel at row i and column j.
% ycocg is a 3D uint8 array such that ycocg(i,j,k) is the value of
% channel k (Y, Co, or Cg) for the pixel at row i and column j after
% being transformed from RGB to YCoCg.
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)

[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = rgb(r, c, 1);
G = rgb(r, c, 2);
B = rgb(r, c, 3);

ycocg(r, c, 1) = % Y value of current pixel
ycocg(r, c, 2) = % Co value of current pixel
ycocg(r, c, 3) = % Cg value of current pixel

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = rgb(r, c, 1);
G = rgb(r, c, 2);
B = rgb(r, c, 3);

ycocg(r, c, 1) = (2*G + R + B)/4; % Y value of current pixel
ycocg(r, c, 2) = (R - B)/2 + 128; % Co value of current pixel
ycocg(r, c, 3) = (2*G - R - B)/4 + 128; % Cg value of current pixel

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = rgb(r, c, 1);
G = rgb(r, c, 2);
B = rgb(r, c, 3);

ycocg(r, c, 1) = (2*G + R + B)/4; % Y value of current pixel
ycocg(r, c, 2) = (R - B)/2 + 128; % Co value of current pixel
ycocg(r, c, 3) = (2*G - R - B)/4 + 128; % Cg value of current pixel

end
end
end

These formulas would lead
to overflow and underflow

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = double(rgb(r, c, 1));
G = double(rgb(r, c, 2));
B = double(rgb(r, c, 3));

ycocg(r, c, 1) = % Y value of current pixel
ycocg(r, c, 2) = % Co value of current pixel
ycocg(r, c, 3) = % Cg value of current pixel

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = double(rgb(r, c, 1));
G = double(rgb(r, c, 2));
B = double(rgb(r, c, 3));

ycocg(r, c, 1) = uint8((2*G + R + B)/4); % Y value of current pixel
ycocg(r, c, 2) = uint8((R - B)/2 + 128); % Co value of current pixel
ycocg(r, c, 3) = uint8((2*G - R - B)/4 + 128); % Cg value of current pixel

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb);
ycocg = uint8(zeros(nr, nc, 3));

for r = 1:nr
for c = 1:nc

R = double(rgb(r, c, 1));
G = double(rgb(r, c, 2));
B = double(rgb(r, c, 3));

ycocg(r, c, 1) = uint8((2*G + R + B)/4); % Y value of current pixel
ycocg(r, c, 2) = uint8((R - B)/2 + 128); % Co value of current pixel
ycocg(r, c, 3) = uint8((2*G - R - B)/4 + 128); % Cg value of current pixel

end
end
end

Make sure all numbers used
in formulas are of type
double

Solve formulas using type
double, and then convert to
uint8 at the end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb)
ycocg = zeros(nr, nc, 3)

for r = 1:nr
for c = 1:nc

R = rgb(r, c, 1);
G = rgb(r, c, 2);
B = rgb(r, c, 3);

ycocg(r, c, 1) = (G/2) + (R/4) + (B/2); % Y value of current pixel
ycocg(r, c, 2) = 128 - (B/2) - (R/2); % Co value of current pixel
ycocg(r, c, 3) = 128 + (G/2) - (R/4) - (B/4);% Cg value of current pixel

end
end
end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb)
ycocg = zeros(nr, nc, 3)

R = rgb(:, :, 1); % R panel
G = rgb(:, :, 2); % G panel
B = rgb(:, :, 3); % B panel

ycocg(:, :, 1) = (G/2) + (R/4) + (B/2); % Y panel
ycocg(:, :, 2) = 128 - (B/2) - (R/2); % Co panel
ycocg(:, :, 3) = 128 + (G/2) - (R/4) - (B/4); % Cg panel

end

Fall 2019 Prelim: Question 4
function ycocg = rgb2ycocg(rgb)
[nr, nc, ~] = size(rgb)
ycocg = zeros(nr, nc, 3)

R = double(rgb(:, :, 1)); % R panel
G = double(rgb(:, :, 2)); % G panel
B = double(rgb(:, :, 3)); % B panel

ycocg(:, :, 1) = uint8((2*G + R + B)/4); % Y value of current pixel
ycocg(:, :, 2) = uint8((R - B)/2 + 128); % Co value of current pixel
ycocg(:, :, 3) = uint8((2*G - R - B)/4 + 128); % Cg panel

end

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Outer double for-loop for the pixels

2 Detect if a given pixel has a full-size
neighborhood of radius s

Full sized if s <= c <= nc-s+1
 and s <= r <= nr-s+1

3

For full sized neighborhood, take the max
intensity within the neighborhood for each color

individually.

Otherwise, compute the gray value at the pixel
and assign to all layers

Full sized -> Correct use of max/min on the
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Creating and getting the size of an array using
zeros() and size()

2 Detect if a given pixel has a full-size
neighborhood of radius s

Full sized if s <= c <= nc-s+1
 and s <= r <= nr-s+1

3

For full sized neighborhood, take the max
intensity within the neighborhood for each color

individually.

Otherwise, compute the gray value at the pixel
and assign to all layers

Full sized -> Correct use of max/min on the
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Creating and getting the size of an array using
zeros() and size()

2 Go through each pixel in the arrays Full sized if s <= c <= nc-s+1
 and s <= r <= nr-s+1

3

For full sized neighborhood, take the max
intensity within the neighborhood for each color

individually.

Otherwise, compute the gray value at the pixel
and assign to all layers

Full sized -> Correct use of max/min on the
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Creating and getting the size of an array using
zeros() and size()

2 Go through each pixel in the arrays Traversing arrays using nested for-loops

3

Full sized -> Correct use of max/min on the
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Creating and getting the size of an array using
zeros() and size()

2 Go through each pixel in the arrays Traversing arrays using nested for-loops

3 Calculate new uint8 values for output

Full sized -> Correct use of max/min on the
neighborhood

Otherwise -> Correct averaging of uint8 values

Designing an algorithm

Fall 2019 Prelim: Question 4

Thing we need to do Programming concept needed to do this
thing

1 Initialize output array to be the right size Creating and getting the size of an array using
zeros() and size()

2 Go through each pixel in the arrays Traversing arrays using nested for-loops

3 Calculate new uint8 values for output

uint8 arithmetic:

either convert to double and back to uint8

or rearrange formula to avoid overflow/underflow

Designing an algorithm

Character and char arrays
• A char array is a 1-D array (vector) of characters, 1 character per position

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

1-D array of characters (1 row, 6 columns)

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

Character and char arrays
• A char array is a 1-D array (vector) of characters, 1 character per cell

• A 2-D char array with n rows could store n strings, with one string per row, as
long as each row has the same number of characters (columns).

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘i’ ‘s’ ‘ ’ ‘ ’ ‘ ’ ‘ ’

‘f’ ‘u’ ‘n’ ‘ ’ ‘ ’ ‘ ’

1-D array of characters (1 row, 6 columns)

2-D array of characters (3 rows, 6 columns)
Note that empty spaces have to be appended onto the shorter
words so that the strings on each row have the same length.

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

B = [‘matlab’; ‘is ’; ‘fun ’];
disp(B(1,:) % prints ‘matlab’

Character and char arrays
• A char array is a 1-D array (vector) of characters, 1 character per cell

• A 2-D char array with n rows could store n strings, with one string per row, as
long as each row has the same number of characters (columns).

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘m’ ‘a’ ‘t’ ‘l’ ‘a’ ‘b’

‘i’ ‘s’ ‘ ’ ‘ ’ ‘ ’ ‘ ’

‘f’ ‘u’ ‘n’ ‘ ’ ‘ ’ ‘ ’

1-D array of characters (1 row, 6 columns)

2-D array of characters (3 rows, 6 columns)
Note that empty spaces have to be appended onto the shorter
words so that the strings on each row have the same length.

A = ‘matlab’;
A = ['m','a','t','l','a','b'];
disp(A(3)) % prints ‘t’

B = [‘matlab’; ‘is ’; ‘fun ’];
disp(B(1,:)) % prints ‘matlab’

A string here
means a sequence
of characters,
not the type string!

Character and char arrays: Useful functions
• strcmp(str1, str2)

Compares if str1 and str2 are identical.
Returns true if str1 has all the same
characters as str2, and 0 if not.
Case-sensitive.

strcmp(‘matlab’, ‘mAtlab’) % 0

str2double(‘20’) + 2 % 22
str2double(‘hi’) % NaN

ssss

Character and char arrays: DO NOT USE ==!

Note that comparing char arrays directly with ‘==’, e.g. str1 == str2,
will return an array of true false values, where each element of str1
is compared to the corresponding element of str2:

‘cat’ == ‘dog’ gives
[false false false]

or will produce a runtime error if str1,str2 are not of same length.

Character and char arrays: Useful functions
• strcmp(str1, str2)

Returns 1 if str1 has all the same
characters as str2, and 0 if not.
Case-sensitive.

• str2double(str1)
If str1 is a char array containing a number,
the function returns that number as a
numerical value. Returns NaN if str1 is
something other than a number.

strcmp(‘matlab’, ‘mAtlab’) % 0

str2double(‘20’) + 2 % 22
str2double(‘hi’) % NaN

Character and char arrays: Example 1
Given a char array s, where

s = ‘hello’

We’d like to reverse it to obtain

r = ‘olleh’

How to we write code to do this?

Solution:
Character c should be exchanged with
character(nc – c) + 1.

for k = 1:length(s)
 r(k) = s(length(s)-k+1);
end

Character and char arrays: Example 1
Given a char array s, where

s = ‘hello’

We’d like to reverse it to obtain

r = ‘olleh’

How to we write code to do this?

Solution:
Character of index c should be
exchanged with character of index
(nc – c) + 1.

Solution:
Character of index c should be
exchanged with character of index
(nc – c) + 1.

n = length(s);

for k = 1:n
 r(k) = s(n-k+1);
end

Character and char arrays: Example 1
Given a char array s, where

s = ‘hello’

We’d like to reverse it to obtain

r = ‘olleh’

How to we write code to do this?

Given a char array s and a
character c, we’d like to display the
number of times c occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ →
display 2.

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
 if strcmp(s(k), c)
 count = count+1;
 end
end
disp(count)

Character and char arrays: Example 2

Solution:

count = 0;
for k = 1:length(s)
 if strcmp(s(k), c)
 count = count+1;
 end
end
disp(count)

Character and char arrays: Example 2
Given a char array s and a
character c, we’d like to display the
number of times c occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ →
display 2.

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
 if strcmp(s(k), c)
 count = count+1;
 end
end
disp(count)

Character and char arrays: Example 2
Given a char array s and a
character c, we’d like to display the
number of times c occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ →
display 2.

How to we write code to do this?

Solution:

count = 0;
for k = 1:length(s)
 if strcmp(s(k), c)
 count = count+1;
 end
end
disp(count)

Character and char arrays: Example 2
Given a char array s and a
character c, we’d like to display the
number of times c occurs in s.

Examples:

s = ‘mathematics’, c = ‘a’ →
display 2.

How to we write code to do this?

Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components,

e.g. one double, one char, one uint8.
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to).

Can store a vector in a single component, or a matrix, or a string, etc.
• Each cell can store something of a different type

Cell arrays
Arrays (e.g. vectors, matrices, 3-D arrays, etc.)
• Can hold one scalar value in each of its components,

e.g. one double, one char, one uint8.
• Data of all components must be the same type

Cell arrays
• Each cell can store something “larger” than a scalar (but doesn’t have to).

Can store a vector in a single component, or a matrix, or a string, etc.
• Each cell can store something of a different type

Cell arrays: useful commands
Initialize a cell array with cell(…) function c = cell(1,3);

% Cell array with 1 row, 3 columns

Obtain number of rows and columns [nr, nc] = size(c);
% Same as for other arrays

Put items (char arrays, in this case) into the cell
array

c = {'matlab', 'is', 'fun'};
% Commas optional

Display first item in cell 1 (which is a char array) disp(c{1})
% Note the use of curly braces

Display first two cells disp(c(1:2))
% Note the use of parentheses

Display first three elements of first cell disp(c{1}(1:3))
% Note the use of curly braces and parentheses

Concatenate the char arrays (produces ‘matlab
is fun’)

s = [c{1} ‘ ’ c{2} ‘ ’ c{3}]
% Note the use of square brackets to create a string

Linear Search
Linear search is an algorithm for finding an element within an array.

Linear Search
Linear search is an algorithm for finding an element within an array.
For example, find if x is in vec

k = 1;
while k <= length(vec) && vec(k) ~= x

k = k + 1;
end

Linear Search
Linear search is an algorithm for finding an element within an array.
For example, find if x is in vec

k = 1;
while k <= length(vec) && vec(k) ~= x

k = k + 1;
end

Check that the index
is not out of bounds

Linear Search
Linear search is an algorithm for finding an element within an array.
For example, find if x is in vec

k = 1;
while k <= length(vec) && vec(k) ~= x

k = k + 1;
end

Check if you have
found the element you

were looking for

If not, advance to the
next element

Linear Search
Linear search is an algorithm for finding an element within an array.
For example, find if x is in vec
k = 1;
while k <= length(vec) && vec(k) ~= x

k = k + 1;
end
if k > length(vec)

found = false;
else

found = true;
end

If the while loop is stopped
because of k, it means
element is not found,

else, it means
element is found.

Linear Search
Linear search is an algorithm for finding an element within an array.
For example, find if x is in vec
k = 1;
while k <= length(vec) && vec(k) ~= x

k = k + 1;
end
if k > length(vec)

found = false;
else

found = true;
end

Note: Using a while
loop is more efficient
than a for loop in this
case since it allows
you to stop looking

after you have found
the element you were

looking for

A 2D cell array S stores email address, for example
S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …

 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},
Find all the netID that contains the letter a in it.

Practice Problem

A 2D cell array S stores email address, for example
S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …

 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},
Generate a 2D cell array T with the same size as S, which only contains the
netIDs. Keep the same order.

Decomposition:
- Loop over all email addresses.

Practice Problem

A 2D cell array S stores email address, for example
S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …

 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},
Generate a 2D cell array T with the same size as S, which only contains the
netIDs. Keep the same order.

Decomposition:
- Loop over all email addresses.
- For each email address, find the netID

Practice Problem

A 2D cell array S stores email address, for example
S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …

 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},
Generate a 2D cell array T with the same size as S, which only contains the
netIDs. Keep the same order.

Decomposition:
- Loop over all email addresses.
- For each email address, find the netID → Linear search for the character @

Practice Problem

A 2D cell array S stores email address, for example
S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …

 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},
Generate a 2D cell array T with the same size as S, which only contains the
netIDs. Keep the same order.

Decomposition:
- Loop over all email addresses.
- For each email address, find the netID → Linear search for the character @
- store each netID into the corresponding position of T

Practice Problem

S = {‘ste652@cornell.edu’, ‘egf34@cornell.edu’,’jkl179@cornell.edu’, …
 ‘ab4@cornell.edu’, ’sn8@cornell.edu’, ’bs435@cornell.edu’, …},

Solution:
[m, n] = size(S); T = cell(m,n)
for i = 1:n

for j = 1:m
email = S{i,j}; netID = ‘’;
for k = 1:length(email)

if email(k) ~= ‘@’
 netID = [netID email(k)];

 end
end

 T{i,j} = netID
end

end

Important functions in processing a file
Read a file

fid= fopen(inFilename , 'r');
Test end-of-file

feof(fid);
Read a line (returns the next line of the specified file)

fgetl(fid);
Close a file

fclose(fid);

Q&A

- Slides and the recording will be posted.
- More questions attached at the end.
- Good luck!

Fall 2016 Prelim: Question 5a

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring for left=1:nr-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring
matches sep

Use a variable that appends the left index each
time the condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring
matches sep

Use a variable that appends the left index each
time the condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring
matches sep

Use a variable that appends the left index each
time the condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index whenever the substring
matches sep

Use a variable that appends the left index each
time the condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index to the output variable
whenever the substring matches sep

Use a variable that appends the left index each
time the condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a

Thing we need to do Programming concept needed to do this thing

1 Loop through all substrings of str with the same
length as sep

A loop on the index of the leftmost character of
the substring

for left=1:length(str)-length(sep)+1 (why?)

2 For a given left index, extract substring with same
length as sep and compare with sep

substr = str(left:left+length(sep)-1); (why?)

strcmp(substr,sep);

3 Record the left index to the output variable
whenever the substring matches sep

Append the left to v each time the above
condition is true

Designing an algorithm

Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= [];
for left = 1 : length(str) – length(sep) + 1
 substr = str(left : left + length(sep) – 1);
 if strcmp(substr, sep) == 1
 v = [v, left];
 end
end

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v

Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= [];
for left = 1 : length(str) – length(sep) + 1
 substr = str(left : left + length(sep) – 1);
 if strcmp(substr, sep) == 1
 v = [v, left];
 end
end

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v

Fall 2016 Prelim: Question 5a
Translating what we need to do into code:

v= [];
for left = 1 : length(str) – length(sep) + 1
 substr = str(left : left + length(sep) – 1);
 if strcmp(substr, sep) == 1
 v = [v, left];
 end
end

Connection to previous slide:
Red: for-loop on left index
Green: use strcmp on substr
Blue: append left index to v

Fall 2016 Prelim: Question 5b

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there is at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 2:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b

Thing we need to do Programming concept needed to do this thing

1 Loop through the individual strings (rows) of M A for-loop that iterates for row_M = 1:size(M,1)

2
Find the commas in a given string.

Skip to the next row if there is less than 2 test scores

Use the getIndices function from the part 5a to find the indices of the
commas comma_idx.

Use an if statement to check if the string has at least 2 scores

3 If there are at least two test scores in the row, extract the
netID and store it in the first column of CA

Since not all rows of M will be stored in output CA, set up a rowCA
index which updates each step. Then

CA{row_CA, 1} = M(rowM , 1:comma_idx(1)-1);

4 Knowing the indices of the commas, loop through the
corresponding substrings to extract test scores

Use another for-loop (nested inside the first) that iterates
from k = 1:length(comma_idx), and determine indices of substring

5 Store as a running sum in the second column of CA, and
take the average after all scores have been extracted.

Initialize the second column to zero outside the for-loop of step 4,
then convert the substring to a double and add to the second column.

Designing an algorithm

Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :));
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k <= length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2);
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k < length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2); % After last comma, take all remaining characters
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2016 Prelim: Question 5b
rowCA = 0; CA = {};
for rowM = 1:size(M,1)
 comma_idx = getIndices(M(rowM , :), ‘,’);
 if length(comma_idx) >= 2
 rowCA = rowCA+1;
 CA{ rowCA, 1 } = M(rowM, 1:comma_idx(1)-1);
 CA{ rowCA, 2 } = 0;
 for k = 1:length(comma_idx)
 left = comma_idx(k)+1;
 if k < length(comma_idx)
 right = comma_idx(k+1)-1;
 else
 right = size(M,2); % After last comma, take all remaining characters
 end
 CA{rowCA,2} = CA{rowCA,2} + str2double(M(rowM, left:right));
 end
 CA{rowCA,2} = CA{rowCA,2}/length(comma_idx);
 end
end

Connection to previous slide:
Red: for-loop to look at each string in M
Orange: extract commas
Green: extract and store netID
Blue: extract test score indices
Black: compute average test score

Fall 2018 Prelim: Question 5

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5

Thing we need to do Programming concept needed to do this thing

1 Look through all of text A for-loop that iterates for k = 1:length(text)

2 Find each word in text

An if statement that checks if the a word ending has not been
reached: if text(k)~=’ ’ && text(k)~=’.’

and builds onto the current word if this is true:
curWord= [curWord text(k)];

3 Search for each completed word in vocab Use linear search to find the first occurance of the current word in the cell
array vocab

4 Update the number of times that the word has occurred Increment the correct index of counts if the current word exists in
vocab

Designing an algorithm

Fall 2018 Prelim: Question 5
nv= length(vocab);
counts= zeros(1,nv);
curWord= ‘’;
for k= 1:length(text)

if text(k)~=’ ’ && text(k)~=’.’
curWord= [curWord text(k)];

else
j= 1;
while j<=nv && ~strcmp(vocab{j}, curWord)

j= j + 1;
end
if j<=nv

counts(j)= counts(j) + 1;
end
curWord= ‘’;

end
end

Connection to previous slide:
Red: for-loop to look at each char in text
Orange: build a word
Green: search for a word in vocab
Blue: update the count

Fall 2018 Prelim: Question 5
nv= length(vocab);
counts= zeros(1,nv);
curWord= ‘’;
for k= 1:length(text)

if text(k)~=’ ’ && text(k)~=’.’
curWord= [curWord text(k)];

else
j= 1;
while j<=nv && ~strcmp(vocab{j}, curWord)

j= j + 1;
end
if j<=nv

counts(j)= counts(j) + 1;
end
curWord= ‘’;

end
end

Connection to previous slide:
Red: for-loop to look at each char in text
Orange: build a word
Green: search for a word in vocab
Blue: update the count

Fall 2018 Prelim: Question 5
nv= length(vocab);
counts= zeros(1,nv);
curWord= ‘’;
for k= 1:length(text)

if text(k)~=’ ’ && text(k)~=’.’
curWord= [curWord text(k)];

else
j= 1;
while j<=nv && ~strcmp(vocab{j}, curWord)

j= j + 1;
end
if j<=nv

counts(j)= counts(j) + 1;
end
curWord= ‘’;

end
end

Connection to previous slide:
Red: for-loop to look at each char in text
Orange: build a word
Green: search for a word in vocab
Blue: update the count

Reset curWord after
the end of a word is

reached

Fall 2018 Prelim: Question 5
nv= length(vocab);
counts= zeros(1,nv);
curWord= ‘’;
for k= 1:length(text)

if text(k)~=’ ’ && text(k)~=’.’
curWord= [curWord text(k)];

else
j= 1;
while j<=nv && ~strcmp(vocab{j}, curWord)

j= j + 1;
end
if j<=nv

counts(j)= counts(j) + 1;
end
curWord= ‘’;

end
end

Connection to previous slide:
Red: for-loop to look at each char in text
Orange: build a word
Green: search for a word in vocab
Blue: update the count

Fall 2018 Prelim: Question 5
nv= length(vocab);
counts= zeros(1,nv);
curWord= ‘’;
for k= 1:length(text)

if text(k)~=’ ’ && text(k)~=’.’
curWord= [curWord text(k)];

else
j= 1;
while j<=nv && ~strcmp(vocab{j}, curWord)

j= j + 1;
end
if j<=nv

counts(j)= counts(j) + 1;
end
curWord= ‘’;

end
end

Connection to previous slide:
Red: for-loop to look at each char in text
Orange: build a word
Green: search for a word in vocab
Blue: update the count

Common Student Errors
● Getting the size of an array/Initializing arrays

size(A) = [nr, nc]; vs [nr, nc] = size(A);
● For loops based on array size

for k = 1:length(nr) vs for k = 1:nr
● 2D Cell Array vs. Arrays in Cells

A{1, 2} A{1}(2)

{1, 2, 3; {[1, 2, 3],
 4, 5, 6} [4, 6]}

has 6 cells has 2 cells

